Dissimilatory sulphate reduction in hypersaline coastal pans: an integrated microbiological and geochemical study.
نویسندگان
چکیده
Here, we report on the spatial and temporal variation in sulphate-reducing bacterial community structure and activity in three hypersaline coastal pans. Community structure was determined using denaturing gradient gel electrophoresis (DGGE). Cluster analysis of DGGE patterns indicated that similar microbial populations were generally found in individual pans but varied from one pan to the other. Sulphate reducing bacteria (SRB) were quantified by competitive polymerase chain reaction based on the amplification of the dsrAB genes. Cell numbers and in situ sulphate reduction activities varied between seasons and pans but in general showed low variation in depth. Sulphate reduction activity was not correlated with microbial population size indicating that community composition is relevant for specific microbial processes. Principal component analysis coupled with correlation analyses suggested that salinity, sulphate concentration, C/N ratio and pH were the most important factors in explaining variations in SRB community composition. Most sequences derived from DGGE amplicons belonged to members of the Desulfobacteraceae and Desulfohalobiaceae families.
منابع مشابه
Sulphate metabolism among thermophiles and hyperthermophiles in natural aquatic systems.
Although controversial, the idea that hydrothermal systems may have been the site for prebiotic synthesis of organic molecules and origin of life is widely supported. For the nascent life to survive, it must have had some sort of metabolic mechanism for generating energy. However, little is known of the specific metabolic pathways utilized by the early life forms or the effect of high temperatu...
متن کاملEvidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho).
Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecologi...
متن کاملCharacterization of geochemical constituents and bacterial populations associated with As mobilization in deep and shallow tube wells in Bangladesh.
While millions of people drink arsenic-contaminated tube well water across Bangladesh, there is no recent scientific explanation which is able to either comprehensively explain arsenic mobilization or to predict the spatial distribution of affected wells. Rather, mitigation strategies have focused on the sinking of deep tube wells into the currently arsenic-free Pleistocene aquifer. In this stu...
متن کاملAlternative pathways for hydrogen disposal during fermentation in the human colon.
Hydrogen gas, which is produced during fermentation in the human colon, is either excreted in breath or metabolised by gut bacteria through a variety of pathways. These may include methanogenesis, dissimilatory sulphate reduction, and acetogenesis. To determine which of these routes predominates in the large intestine, stools were taken from 30 healthy subjects and incubated as 5% (w/v) slurrie...
متن کاملEnergy metabolism and phylogenetic diversity of sulphate-reducing bacteria
Sulphate-reducing bacteria (SRB) are those prokaryotic microorganisms, both bacteria and archaea, that can use sulphate as the terminal electron acceptor in their energy metabolism, i.e. that are capable of dissimilatory sulphate reduction. Most of the SRB described to date belong to one of the four following phylogenetic lineages (with some examples of genera): (i) the mesophilic d-proteobacte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Geobiology
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2013